

Alternative Contracting Methods a risky business

November 13, 2019 New York State Internal Control Association 7th Annual Integrity, Fraud, and Controls Conference

SUNY Global Center 116 E 55th St, New York, NY 10022

Daniel D'Angelo, P.E., PMP, PMI-RMP

© 2019 Applied Research Associates, Inc. • ARA Proprietary

Agenda

- 1. Introduction
- 2. Key Message
- 3. a) Parties; b) PDMs/ACMs; c) Performance
- 4. Decision Support Toolset
- 5. Owner's Role
- 6. Integrity, Fraud, and Controls changes?

1. Introduction

Who is Applied Research Associates, Inc.?

© 2019 Applied Research Associates, Inc. • ARA Proprietary

ENERGY & ENVIRONMENT

HEALTH SOLUTIONS

Who am I?

- Daniel D'Angelo
 - BS Civil Engineering, MBA Organizational Leadership
 - P.E., PMP, PMI-RMP, PfMP,
 - 33-years with New York State DOT
 - Design, project delivery, risk management, portfolio management
 - Innovation Deployment Manager SHRP2, EDC
 - Deputy Chief Engineer, ARRA, Tappan Zee, LHTL/BRT
 - 3-years with ARA
 - NHI Instructor Risk Management
 - FHWA Bridge Bundling, Project Bundling initiatives
 - FHWA Value Capture initiative
 - FHWA ACM Evaluation Toolset
 - NCHRP Projects Constructability, cost-estimate, post-award management

2. Key Message

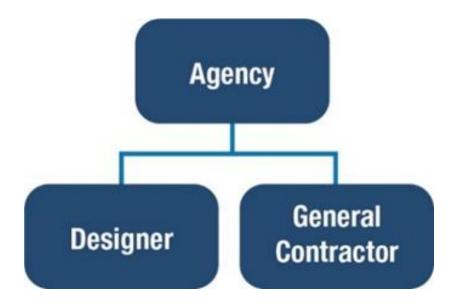
Different delivery methods = different methods for allocating risks among different parties

- Does my agency, or agencies you oversee, use different methods?
- Does my agency have processes, controls in place?
- Do we have the experience to execute? To provide oversight?
- Do we know what the potential fraud areas are for different methods? Are they different than traditional delivery methods?
- Is there enough history? What can we learn from others?

3. a) Parties

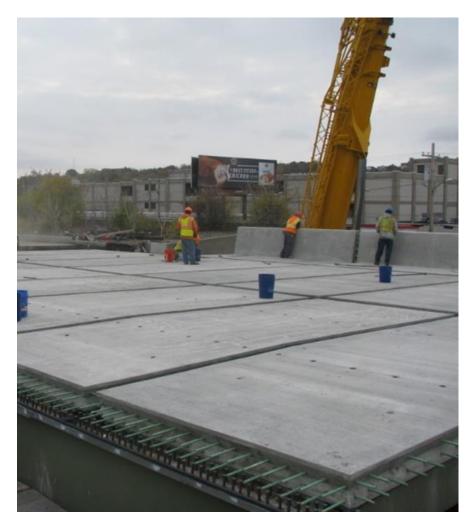
"Parties"

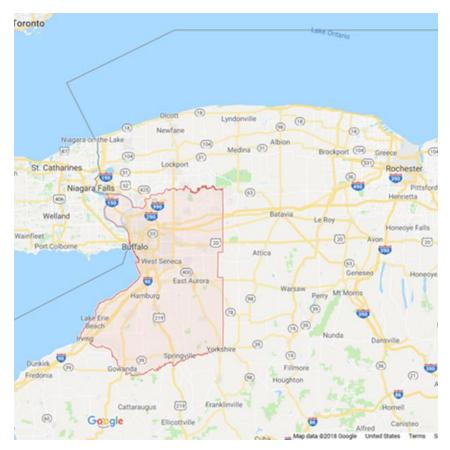
- > Owner/Agency
- Engineering/Professional Service providers
- Contractor/Subcontractors
- Concessionaire/financier/developer
- > Operator/Maintainer
- > Oversight Agencies


3. b) PDMs/ACMs

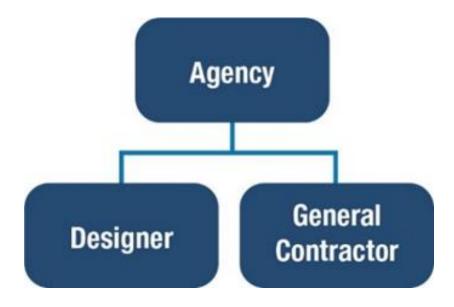
Project Delivery Methods

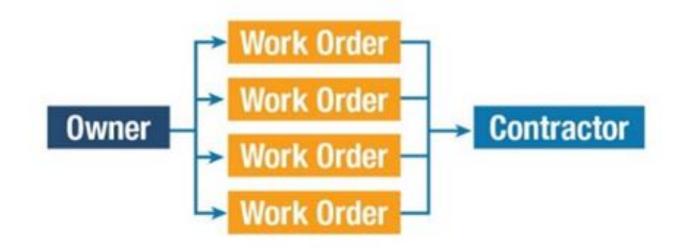
- Design-Bid-Build (DBB)
- **Indefinite Delivery Indeterminate Quantity (IDIQ)**
- Construction Manager/General Contractor (CM/GC)
- **Design-Build (DB)**
- **Progressive Design-Build (PDB)**
- Public-Private Partnership (P3)
- Alliancing




Design-Bid-Build (DBB)

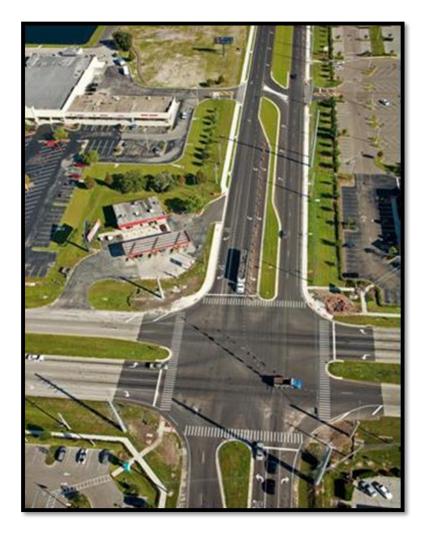
DBB Example

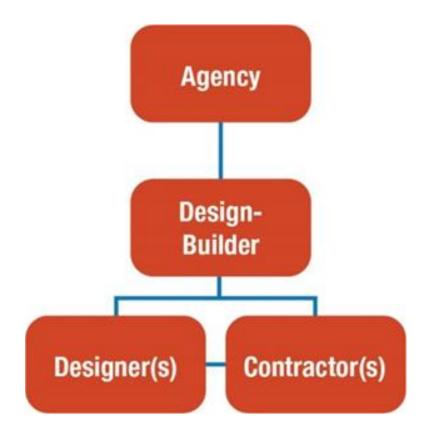


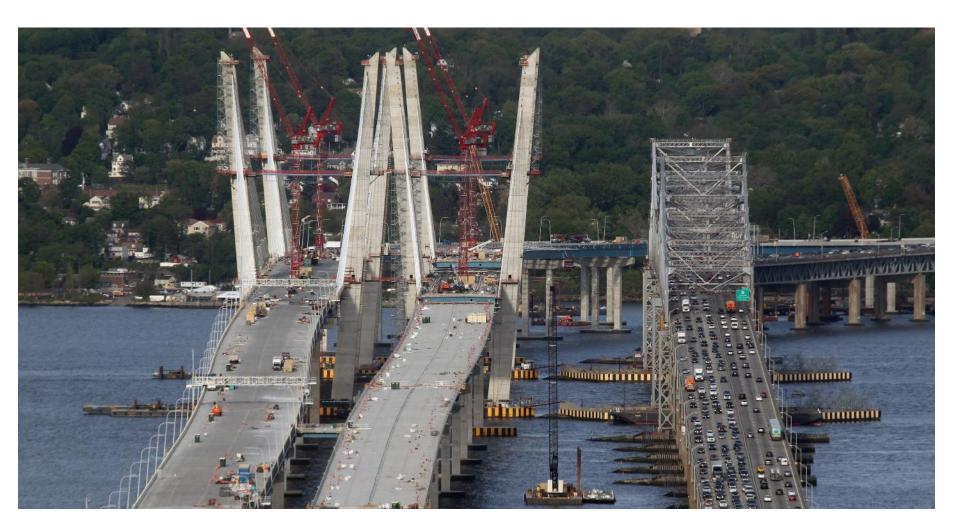

Indefinite Delivery Indefinite Quantity (IDIQ)

Indefinite Delivery Indefinite Quantity (IDIQ)

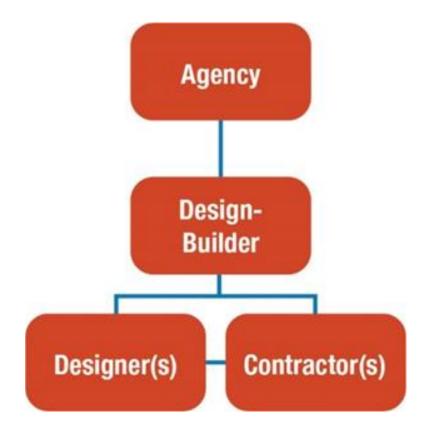
IDIQ Example


Construction Manager/General Contractor (CM/GC)


CM/GC Example

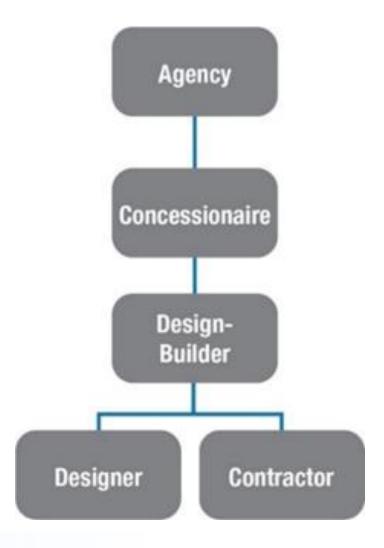


Design-Build (DB)

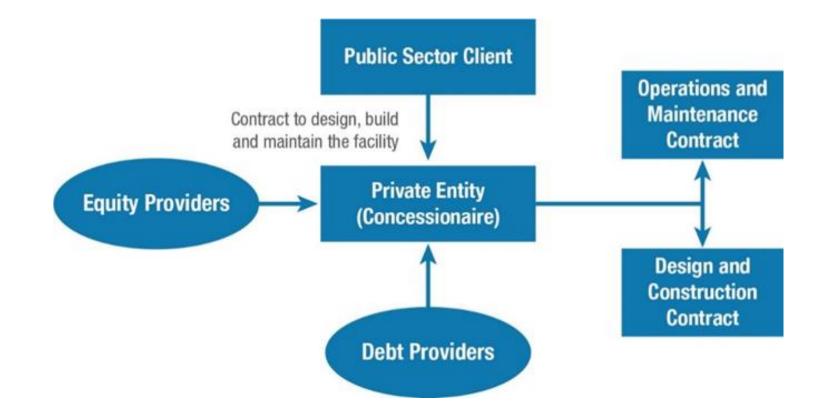


DB Example

Progressive Design-Build (PDB)



PDB Example


Public Private Partnership (P3)

Public Private Partnership (P3)

P3 Example

Alternative Technical Concepts (ATC)

Procurement Methods

- > Low bid (LB)
- > Best-Value (BV)
- > Qualifications Based Selection (QBS)

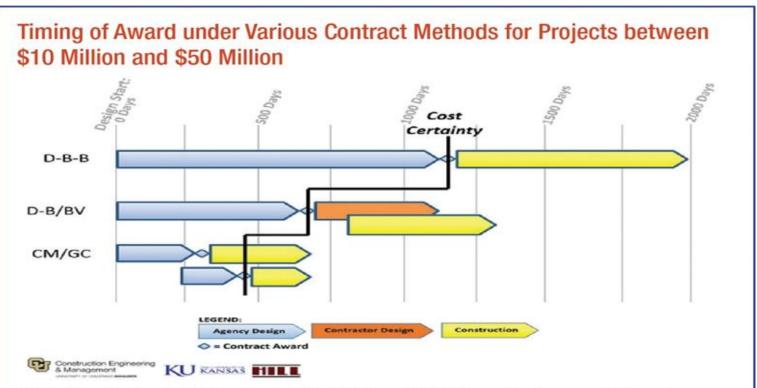
3. c) Performance

Average contract durations

Average Duration under Various Contract Methods for Projects between \$10 Million and \$50 Million

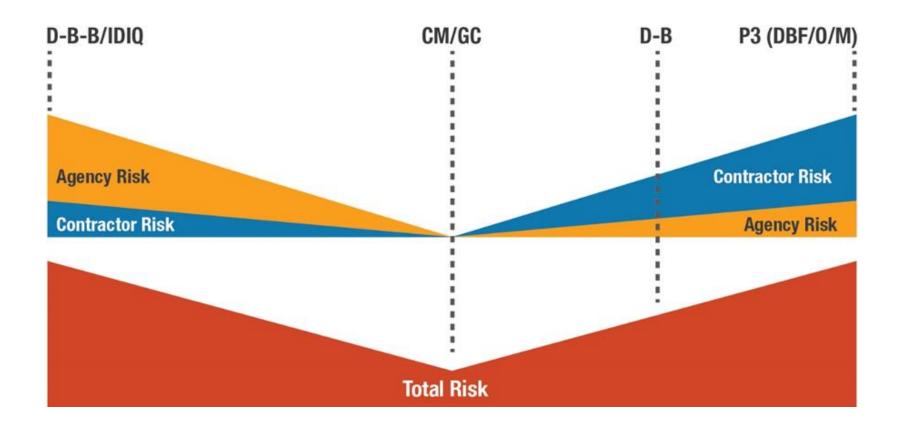
Contract Method	Mean Cost \$	Mean Project Duration (Days)	Mean Agency Design Duration (Days)	Mean Construction Duration (Days) ¹
D-B-B (n=34)	\$21,188,585	2,130	1,139	818
CM/GC (n=10)	\$23,912,981	662	281	349
D-B/BV (n=10)	\$18,604,503	1,420	638	639

Construction Engineering & Management


The CM/GC contracting method increases the speed of project delivery over other methods such as D-B-B and design-build/best value (D-B/BV). This graph compares the durations of projects with similar initial costs (as shown in the column for mean cost) and does not indicate the final price of the projects. The subscripts for each contract method indicate the number of projects used to gather the data.

1. Construction duration for design-bid/best- value projects includes design-builder design and construction (D-B contract duration).

Source: FHWA TechBrief HRT-17-100


Timing of award for ACMs

ACMs like design-build/best value (D-B/BV) and CM/GC enable transportation planners to determine the cost certainty faster than the traditional D-B-B method. Cost certainty is the point at which the contractor provides a firm price for the project to the agency. For CM/GC, cost certainty is known after the cost for the last construction package has been agreed on. The figure shows two packages for illustrative purposes.

Risk allocation by project delivery method

Source: FHWA Bridge Bundling Guidebook

Project Delivery Methods – goal types

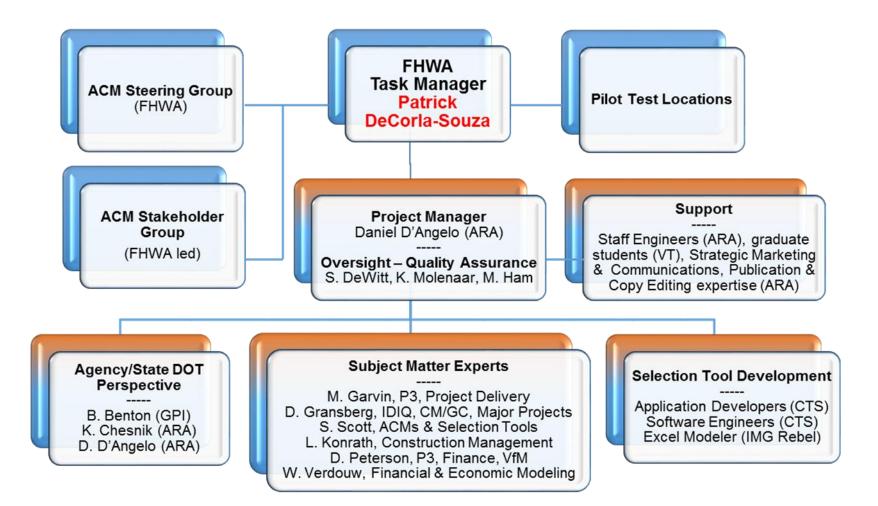
	D-B-B	IDIQ	CM/GC	D-B	P3
Program	 Agency 	 Quick 	 Risk allocation 	• Transfer risks	Transfer risk
Goals	retains design	response for	to party best to	to contractor	to
	risks	unknown needs	handle	 Increase 	concessionaire
	 Traditional 	• Improve asset	 Contractor 	capacity of	• Operations,
	delivery	management	innovation	agency	long-term
	 Maintain 		 Projects with 	 Contractor 	maintenance
	control of final		complex	Innovation	 Contractor
	product		components		Innovation

Project Delivery Methods – project characteristics

	D-B-B	IDIQ	CM/GC	D-B	P3
Project Characteristics	•		 Projects w/ complexities. 	Time savingsInnovation	time savingsInnovation
	 Third-party Issues resolved 	maintenanceReplacementsPredictable		party	 Limited third- party involvement
	before advertisement	but not yet determined	 "Out of the box" thinking 	(ROW, Environmental,	(ROW, Utilities, Environmental,
		work.	required	Utilities, Railroads, etc.).	Railroads, etc.). • Variety of work types.

Project Delivery Methods – procurement methods

	D-B-B	IDIQ	CM/GC	D-B	P3
Procurement Methods	 Low Bid Best Value 	 Low Bid 	QBSGMP	Best ValueQBSLow Bid	Best ValueQBS


4. Decision Support Toolset

Project Objective

"To develop a suite of linked analytical tools that <u>incorporates and integrates the best of the</u> <u>tools</u> and processes already developed by FHWA, State DOTs and others, while <u>filling the</u> <u>gaps</u> wherever they exist and enhancing their capabilities."

Project Organization

Scope of Work

- 1. Report on State DOTs+ evaluation methodologies ✓
- 2. Select locations for case studies \checkmark
- 3. Prepare case studies \checkmark
- 4. Draft ACM evaluation toolset ✓
- 5. Workshop ✓
- 6. Revised ACM evaluation toolset ✓
- 7. Pilot Test/reports (up to six) ✓
- 8. Final ACM evaluation toolset (November 27, 2019)

Evaluation Methodologies

Key Findings: DOTs choose ACMs for 3 primary reasons -

- 1. Accelerate schedule
- 2. Reduce risk through enhanced schedule and cost certainty
- 3. Address complexity through collaboration

Performance Measurements of selected ACMs very limited.

Selection rely significantly on user judgments.

Federal Highway Administration Office of Innovative Program Delivery

Tools and Technical Assistance for Evaluation of Alternative Contracting Methods

ACM Evaluation Methodologies in the United States [and Select International Practices]

Summary Report

October 24, 2018

Case Studies Selection Criteria

- 1. Mature ACM programs
- 2. More than one ACM
- 3. Institutionalized (manuals, guidebooks, policy documents)
- 4. Availability of performance data

Federal Highway Administration Office of Innovative Program Delivery

Tools and Technical Assistance for Evaluation of Alternative Contracting Methods

ACM Evaluation Methodologies in the United States [and Select International Practices]

Task 3 Report to Select Case Study States

October 17, 2018

Case Studies

California DOT Florida DOT Michigan DOT Texas DOT Utah DOT Virginia DOT Washington DOT Australia Transit VfM – Purple Line Federal Highway Administration Office of Innovative Program Delivery

Tools and Technical Assistance for Evaluation of Alternative Contracting Methods

Case Studies on Alternative Contracting Method Evaluation by Select State Departments of Transportation in the United States and an International Agency

REVISED DRAFT Summary Report

March 13, 2019

Case Study Key Findings

- What we did not find was most important!
- No performance measures, limited data
- No state DOT using quantitative tools
- No uniform evaluation method amongst the state DOTs
- No direct ACM comparator vs P3 comparison
- Prefer simpler, flexible tools that show ranking
- Most do not evaluate the full range of ACMs
- Evolving policies on evaluation methods and documenting decisions – early in process decision is preferred
- Interest in a database of performance data



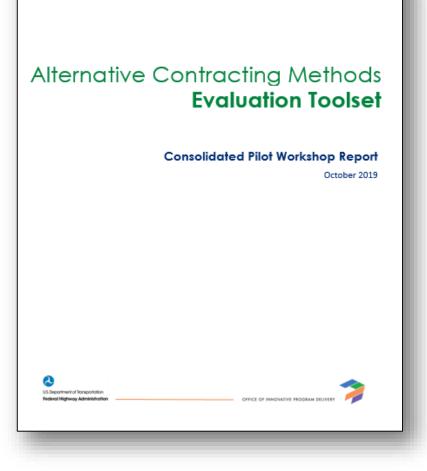
ACM evaluation tools considered/used -

- CDOT's Project Delivery Selection Matrix (PDSM)
- Caltrans' Alternative Procurement Guide
- TCRP Report 131: A Guidebook for the Evaluation of Project Delivery Methods
- Value for Money (VfM) Analysis
- P3-SCREEN, P3-EFFECTS, and P3-VALUE 2.2
- SHRP2 R10 Project Management Strategies
- SHRP2 R09 Risk Management for Complex Projects

Workflow

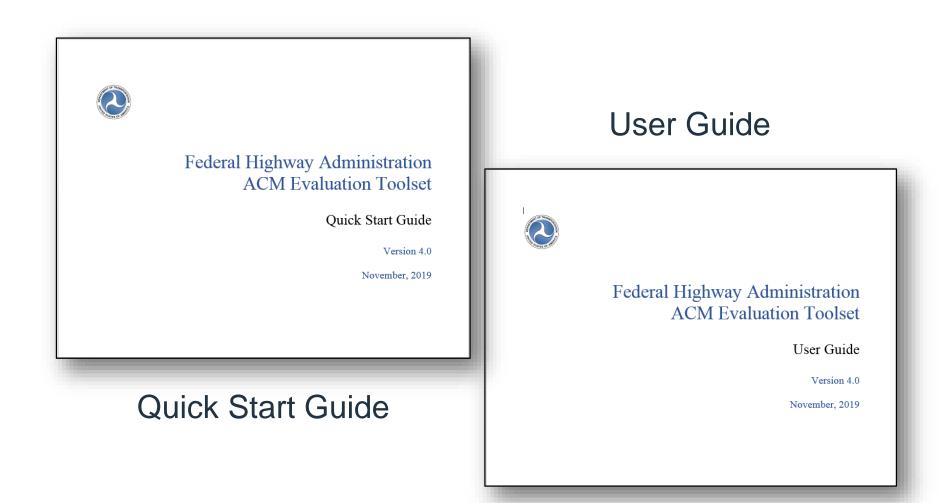
2019-09-30

ACM Pilot Workshops –


- California DOT (pilot pilot) 8/09/19
- >Georgia DOT 10/25/19
- Michigan DOT 10/03/19
- South Carolina DOT- 10/08/19
- >Texas DOT 10/01/19
- ≻Utah DOT 10/15/19
- Virginia DOT 10/07/19

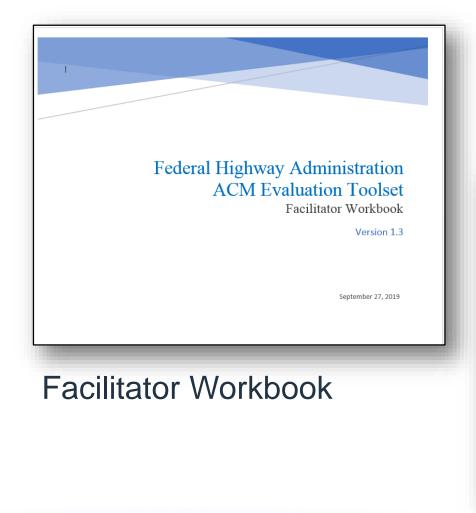
ACM Pilot Workshop Feedback –

- Very positive
- Improvement suggestions
 & enhancements
- Use as is!
- Extremely valuable task, need for toolset clear



Toolset

THE STATES OF MENT
US Department of Transportation Federal Highway Administration ACM Evaluation Toolset
ddangelo@ara.com Login
Forgot Password Register Account



Toolset Supporting Documentation

Toolset Supporting Documentation

Administrator Guide

Federal Highway Administration ACM Evaluation Toolset

Administrator Guide

Version 2.0

November, 2019

ACM Evaluation Toolset

- Administrative features
- Project Input (ACM-INFO)
- Short-term vs. Long-term evaluation (ACM-SCREEN)
- Short-term evaluation (ACM-Risk)
- Long-term evaluation (P3-EFFECTS 2.0, P3-VALUE 2.3)
- Output/Report features

ACM-Risk

US Department of Transportation Federal Highway Administration

	Back Forwar Reload	d Alt-		ft Arrow nt Arrow Ctrl+R		Dan D'Ange Logo
Test 02 roject Delivery Risk Allocation sk Allocation Assessment Matrix	Save as Print Cast Translate to English Adobe Acrobat		Ctrl+S Ctrl+P			
ck to see General Risk Categories/High Level Risks) Risk Description 👩	View p Inspect	age source t		Ctrl+U +Shift+I alitative Risk	Assessme	ent
Delay in review of environmental documentation		Probability of Occurrence Ø P <= 5%	•	Severity o		Risk Rating 🥑
Third-party delays during construction		5% <= P < 20%		Minor Dela Major Dela		4 9
Acquisition ROW problems		20% <= P < 60%	6 • •	Catastrop		12 4
Pressure to delivery project on an accelerated schedule Construction QC/QA issues		P <= 5% 5% <= P < 20%	•	Minor Delay and/ ▼ Major Delay and/ ▼		2
reputation		20% <= P < 60%	6 •	Catastrop	hic Del: ▼	12

Notes/Comments 🕖

ACM-Risk

US Department of Transportation Federal Highway Administration

Welcome, Dan D'Angelo

Logout

Administration Home Reports - FAQs About -

Test 02-Copied Project Delivery Risk Allocation Risk Allocation Decision Matrix Select the ACM methods for Risk Allocation 7 DBB CMGC DB PDB Ability to Mitigate through Delivery Method 6 Risk Description 7 Risk Rating DBB CMGC DB PDB 0 Advantageous t V Advantageous t V Reasonable to I • Delay in review of environmental documentation 6 Costly to Manac 🔻 Reasonable to I • Reasonable to I 🔻 Costly to Mana; • Third-party delays during construction 12 Advantageous t 🔻 Advantageous t v Potentially a Fa 🔻 Costly to Manac . Railroad involvement 16 Advantageous t v 6 Advantageous t V Advantageous t V Reasonable to I • Acquisition ROW problems Costly to Manac 🔻 Advantageous t v Advantageous t v Costly to Manac 🔻 Reasonable to I v Community relations Pressure to delivery project on an accelerated schedule 12 Potentially a Fa 🔻 Advantageous t v Advantageous t V Reasonable to I . 9 Reasonable to I • Construction QC/QA issues Costly to Manac 🔻 Advantageous t V Reasonable to I 🔻 12 Advantageous t v Advantageous t v Costly to Manac 🔻 Reasonable to I v reputation Advantageous t V Unforeseen delays due to utility owner and third-party Costly to Manac 🔻 Costly to Manac 🔻 Costly to Mana(* Assessment Matrix Risk Allocation Rating(Lower Number = Higher Risk) 320 242 206 Notes/Comments 7

5. Owner's Role

QA: Control and Acceptance

A construction QA program consists of the following core elements:

- Agency acceptance.
- Independent assurance.
- Dispute resolution.
- Personal qualification.
- Laboratory accreditation/ qualification.

Image source: FHWA

Quality Assurance Options

PROJECT DELIVERY METHOD	AGENCY OVERSIGHT & ACCEPTANCE OPTIONS	QUALITY CONTROL OPTIONS
D-B-B & IDIQ	 By agency in-house staff. By agency representative (outsourced to consultant). 	 Contractor QC staff are independent of construction staff.
CM/GC	 By agency in-house staff. By agency representative (outsourced to consultant). 	 Same as D-B-B.
D-B & P3	 By agency in-house staff. By agency representative (outsourced to consultant). 	 D-B QC staff are independent of construction staff. Design-builder employs an independent testing firm. Agency responsible for verification testing.

6. Integrity, Fraud, and Controls changes?

Different delivery methods = different methods for allocating risks among different parties

- Does my agency, or agencies you oversee, use different methods?
- Does my agency have processes, controls in place?
- Do we have the experience to execute? To provide oversight?
- Do we know what the potential fraud areas are for different methods? Are they different than traditional delivery methods?
- Is there enough history? What can we learn from others?

Daniel D'Angelo, P.E. Principal Civil Engineer Applied Research Associates, Inc. (518) 526-5738 ddangelo@ara.com

